Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(5): 114117, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38630590

RESUMEN

Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to ß-galactosidase deficiency drastically alters neuronal Ca2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated N-methyl D-aspartate receptor (NMDAR) Ca2+ channel, thereby increasing Ca2+ flux, activating extracellular signal-regulated kinase (ERK) signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and worsens the generalized neuronal cell death characteristic of GM1-gangliosidosis.

2.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38467404

RESUMEN

The mitochondrial contact site and cristae organizing system (MICOS) is important for crista junction formation and for maintaining inner mitochondrial membrane architecture. A key component of the MICOS complex is MIC60, which has been well studied in yeast and cell culture models. However, only one recent study has demonstrated the embryonic lethality of losing Immt (the gene encoding MIC60) expression. Tamoxifen-inducible ROSA-CreERT2-mediated deletion of Immt in adult mice disrupted the MICOS complex, increased mitochondria size, altered cristae morphology, and was lethal within 12 d. Pathologically, these mice displayed defective intestinal muscle function (paralytic ileus) culminating in dehydration. We also identified bone marrow (BM) hypocellularity in Immt-deleted mice, although BM transplants from wild-type mice did not improve survival. Altogether, this inducible mouse model demonstrates the importance of MIC60 in vivo, in both hematopoietic and non-hematopoietic tissues, and provides a valuable resource for future mechanistic investigations into the MICOS complex.


Asunto(s)
Membranas Asociadas a Mitocondrias , Proteínas Mitocondriales , Animales , Ratones , Proteínas Mitocondriales/metabolismo , Membranas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38352415

RESUMEN

Synaptic plasticities, such as long-term potentiation (LTP) and depression (LTD), tune synaptic efficacy and are essential for learning and memory. Current studies of synaptic plasticity in humans are limited by a lack of adequate human models. Here, we modeled the thalamocortical system by fusing human induced pluripotent stem cell-derived thalamic and cortical organoids. Single-nucleus RNA-sequencing revealed that most cells in mature thalamic organoids were glutamatergic neurons. When fused to form thalamocortical assembloids, thalamic and cortical organoids formed reciprocal long-range axonal projections and reciprocal synapses detectable by light and electron microscopy, respectively. Using whole-cell patch-clamp electrophysiology and two-photon imaging, we characterized glutamatergic synaptic transmission. Thalamocortical and corticothalamic synapses displayed short-term plasticity analogous to that in animal models. LTP and LTD were reliably induced at both synapses; however, their mechanisms differed from those previously described in rodents. Thus, thalamocortical assembloids provide a model system for exploring synaptic plasticity in human circuits.

4.
Cell ; 187(2): 276-293.e23, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38171360

RESUMEN

During development, morphogens pattern tissues by instructing cell fate across long distances. Directly visualizing morphogen transport in situ has been inaccessible, so the molecular mechanisms ensuring successful morphogen delivery remain unclear. To tackle this longstanding problem, we developed a mouse model for compromised sonic hedgehog (SHH) morphogen delivery and discovered that endocytic recycling promotes SHH loading into signaling filopodia called cytonemes. We optimized methods to preserve in vivo cytonemes for advanced microscopy and show endogenous SHH localized to cytonemes in developing mouse neural tubes. Depletion of SHH from neural tube cytonemes alters neuronal cell fates and compromises neurodevelopment. Mutation of the filopodial motor myosin 10 (MYO10) reduces cytoneme length and density, which corrupts neuronal signaling activity of both SHH and WNT. Combined, these results demonstrate that cytoneme-based signal transport provides essential contributions to morphogen dispersion during mammalian tissue development and suggest MYO10 is a key regulator of cytoneme function.


Asunto(s)
Estructuras de la Membrana Celular , Miosinas , Tubo Neural , Transducción de Señal , Animales , Ratones , Transporte Biológico , Estructuras de la Membrana Celular/metabolismo , Proteínas Hedgehog/metabolismo , Miosinas/metabolismo , Seudópodos/metabolismo , Tubo Neural/citología , Tubo Neural/metabolismo
5.
Drug Resist Updat ; 72: 101017, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37988981

RESUMEN

The role of ABCC4, an ATP-binding cassette transporter, in the process of platelet formation, megakaryopoiesis, is unknown. Here, we show that ABCC4 is highly expressed in megakaryocytes (MKs). Mining of public genomic data (ATAC-seq and genome wide chromatin interactions, Hi-C) revealed that key megakaryopoiesis transcription factors (TFs) interacted with ABCC4 regulatory elements and likely accounted for high ABCC4 expression in MKs. Importantly these genomic interactions for ABCC4 ranked higher than for genes with known roles in megakaryopoiesis suggesting a role for ABCC4 in megakaryopoiesis. We then demonstrate that ABCC4 is required for optimal platelet formation as in vitro differentiation of fetal liver derived MKs from Abcc4-/- mice exhibited impaired proplatelet formation and polyploidization, features required for optimal megakaryopoiesis. Likewise, a human megakaryoblastic cell line, MEG-01 showed that acute ABCC4 inhibition markedly suppressed key processes in megakaryopoiesis and that these effects were related to reduced cAMP export and enhanced dissociation of a negative regulator of megakaryopoiesis, protein kinase A (PKA) from ABCC4. PKA activity concomitantly increased after ABCC4 inhibition which was coupled with significantly reduced GATA-1 expression, a TF needed for optimal megakaryopoiesis. Further, ABCC4 protected MKs from 6-mercaptopurine (6-MP) as Abcc4-/- mice show a profound reduction in MKs after 6-MP treatment. In total, our studies show that ABCC4 not only protects the MKs but is also required for maximal platelet production from MKs, suggesting modulation of ABCC4 function might be a potential therapeutic strategy to regulate platelet production.


Asunto(s)
Plaquetas , Megacariocitos , Animales , Humanos , Ratones , Transportadoras de Casetes de Unión a ATP/metabolismo , Plaquetas/metabolismo , Diferenciación Celular , Megacariocitos/metabolismo , Mercaptopurina/farmacología , Mercaptopurina/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo
6.
bioRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38076863

RESUMEN

Contact sites between lipid droplets and other organelles are essential for cellular lipid and energy homeostasis. Detection of these contact sites at nanometer scale over time in living cells is challenging. Here, we developed a tool kit for detecting contact sites based on Fluorogen-Activated Bimolecular complementation at CONtact sites, FABCON, using a reversible, low affinity split fluorescent protein, splitFAST. FABCON labels contact sites with minimal perturbation to organelle interaction. Via FABCON, we quantitatively demonstrated that endoplasmic reticulum (ER)- and mitochondria (mito)-lipid droplet contact sites are dynamic foci in distinct metabolic conditions, such as during lipid droplet biogenesis and consumption. An automated analysis pipeline further classified individual contact sites into distinct subgroups based on size, likely reflecting differential regulation and function. Moreover, FABCON is generalizable to visualize a repertoire of organelle contact sites including ER-mito. Altogether, FABCON reveals insights into the dynamic regulation of lipid droplet-organelle contact sites and generates new hypotheses for further mechanistical interrogation during metabolic switch.

8.
bioRxiv ; 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37503265

RESUMEN

Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca 2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca 2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to ß-galactosidase deficiency drastically alters neuronal Ca 2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated NMDAR Ca 2+ channel, thereby increasing Ca 2+ flux, activating ERK signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and exacerbates the generalized neuronal cell death characteristic of GM1-gangliosidosis.

9.
Cell Rep ; 42(7): 112804, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37453060

RESUMEN

The bone marrow microenvironment (BME) drives drug resistance in acute lymphoblastic leukemia (ALL) through leukemic cell interactions with bone marrow (BM) niches, but the underlying mechanisms remain unclear. Here, we show that the interaction between ALL and mesenchymal stem cells (MSCs) through integrin ß1 induces an epithelial-mesenchymal transition (EMT)-like program in MSC-adherent ALL cells, resulting in drug resistance and enhanced survival. Moreover, single-cell RNA sequencing analysis of ALL-MSC co-culture identifies a hybrid cluster of MSC-adherent ALL cells expressing both B-ALL and MSC signature genes, orchestrated by a WNT/ß-catenin-mediated EMT-like program. Blockade of interaction between ß-catenin and CREB binding protein impairs the survival and drug resistance of MSC-adherent ALL cells in vitro and results in a reduction in leukemic burden in vivo. Targeting of this WNT/ß-catenin-mediated EMT-like program is a potential therapeutic approach to overcome cell extrinsically acquired drug resistance in ALL.


Asunto(s)
Transición Epitelial-Mesenquimal , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , beta Catenina , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Técnicas de Cocultivo , Resistencia a Medicamentos , Proliferación Celular , Microambiente Tumoral
10.
Commun Biol ; 6(1): 673, 2023 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355765

RESUMEN

While heme synthesis requires the formation of a potentially lethal intermediate, protoporphyrin IX (PPIX), surprisingly little is known about the mechanism of its toxicity, aside from its phototoxicity. The cellular protein interactions of PPIX might provide insight into modulators of PPIX-induced cell death. Here we report the development of PPB, a biotin-conjugated, PPIX-probe that captures proteins capable of interacting with PPIX. Quantitative proteomics in a diverse panel of mammalian cell lines reveal a high degree of concordance for PPB-interacting proteins identified for each cell line. Most differences are quantitative, despite marked differences in PPIX formation and sensitivity. Pathway and quantitative difference analysis indicate that iron and heme metabolism proteins are prominent among PPB-bound proteins in fibroblasts, which undergo PPIX-mediated death determined to occur through ferroptosis. PPB proteomic data (available at PRIDE ProteomeXchange # PXD042631) reveal that redox proteins from PRDX family of glutathione peroxidases interact with PPIX. Targeted gene knockdown of the mitochondrial PRDX3, but not PRDX1 or 2, enhance PPIX-induced death in fibroblasts, an effect blocked by the radical-trapping antioxidant, ferrostatin-1. Increased PPIX formation and death was also observed in a T-lymphoblastoid ferrochelatase-deficient leukemia cell line, suggesting that PPIX elevation might serve as a potential strategy for killing certain leukemias.


Asunto(s)
Ácido Aminolevulínico , Peroxirredoxinas , Animales , Ácido Aminolevulínico/metabolismo , Ácido Aminolevulínico/farmacología , Peroxirredoxinas/genética , Proteómica , Hemo/metabolismo , Muerte Celular , Mamíferos
11.
Nature ; 595(7869): 724-729, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234346

RESUMEN

T follicular helper (TFH) cells are crucial for B cell-mediated humoral immunity1. Although transcription factors such as BCL6 drive the differentiation of TFH cells2,3, it is unclear whether and how post-transcriptional and metabolic programs enforce TFH cell programming. Here we show that the cytidine diphosphate (CDP)-ethanolamine pathway co-ordinates the expression and localization of CXCR5 with the responses of TFH cells and humoral immunity. Using in vivo CRISPR-Cas9 screening and functional validation in mice, we identify ETNK1, PCYT2, and SELENOI-enzymes in the CDP-ethanolamine pathway for de novo synthesis of phosphatidylethanolamine (PE)-as selective post-transcriptional regulators of TFH cell differentiation that act by promoting the surface expression and functional effects of CXCR5. TFH cells exhibit unique lipid metabolic programs and PE is distributed to the outer layer of the plasma membrane, where it colocalizes with CXCR5. De novo synthesis of PE through the CDP-ethanolamine pathway co-ordinates these events to prevent the internalization and degradation of CXCR5. Genetic deletion of Pcyt2, but not of Pcyt1a (which mediates the CDP-choline pathway), in activated T cells impairs the differentiation of TFH cells, and this is associated with reduced humoral immune responses. Surface levels of PE and CXCR5 expression on B cells also depend on Pcyt2. Our results reveal that phospholipid metabolism orchestrates post-transcriptional mechanisms for TFH cell differentiation and humoral immunity, highlighting the metabolic control of context-dependent immune signalling and effector programs.


Asunto(s)
Inmunidad Humoral , Fosfatidiletanolaminas/metabolismo , Receptores CXCR5/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Linfocitos B/inmunología , Sistemas CRISPR-Cas , Diferenciación Celular , Citidina Difosfato , Femenino , Regulación de la Expresión Génica , Humanos , Leucocitos Mononucleares/inmunología , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfotransferasas (Aceptor de Grupo Alcohol) , ARN Nucleotidiltransferasas , Transducción de Señal
12.
Elife ; 102021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33570491

RESUMEN

Morphogens function in concentration-dependent manners to instruct cell fate during tissue patterning. The cytoneme morphogen transport model posits that specialized filopodia extend between morphogen-sending and responding cells to ensure that appropriate signaling thresholds are achieved. How morphogens are transported along and deployed from cytonemes, how quickly a cytoneme-delivered, receptor-dependent signal is initiated, and whether these processes are conserved across phyla are not known. Herein, we reveal that the actin motor Myosin 10 promotes vesicular transport of Sonic Hedgehog (SHH) morphogen in mouse cell cytonemes, and that SHH morphogen gradient organization is altered in neural tubes of Myo10-/- mice. We demonstrate that cytoneme-mediated deposition of SHH onto receiving cells induces a rapid, receptor-dependent signal response that occurs within seconds of ligand delivery. This activity is dependent upon a novel Dispatched (DISP)-BOC/CDON co-receptor complex that functions in ligand-producing cells to promote cytoneme occurrence and facilitate ligand delivery for signal activation.


During development, cells must work together and talk to each other to build the organs and tissues of the growing embryo. To communicate precisely with long-distance targets, cells can project a series of thin finger-like structures known as cytonemes. Cells use these miniature highways to exchange cargo and signals, such as the protein sonic hedgehog (SHH for short). Alterations to the way SHH is exchanged during development predispose to cancer and lead to disorders of the nervous system. Yet, the mechanisms by which cytonemes work in mammals remain to be fully elucidated. In particular, it is still unclear how the structures start to form, and how the proteins are loaded and transported from one end to another. A 'molecular motor' called myosin 10, which can carry cargo along the internal skeleton of cells, may be involved in these processes. To find out, Hall et al. used fluorescent probes to track both myosin 10 and SHH in mouse cells, showing that myosin 10 carries SHH from the core of the signal-producing cell to the tips of cytonemes. There, the protein is passed to the target cell upon contact, triggering a quick response. SHH also appeared to be more than just passive cargo, interacting with another group of proteins in the signal-emitting cell before reaching its target. This mechanism then encourages the signalling cells to produce more cytonemes towards their neighbours. SHH is crucial during development, but also after birth: in fact, changes to SHH transport in adulthood can also disrupt tissue balance and hinder healing. Understanding how healthy tissues send this signal may reveal why and how disease emerges.


Asunto(s)
Moléculas de Adhesión Celular/genética , Proteínas Hedgehog/genética , Inmunoglobulina G/genética , Proteínas de la Membrana/genética , Miosinas/genética , Receptores de Superficie Celular/genética , Animales , Transporte Biológico , Moléculas de Adhesión Celular/metabolismo , Proteínas Hedgehog/metabolismo , Inmunoglobulina G/metabolismo , Ligandos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Miosinas/metabolismo , Receptores de Superficie Celular/metabolismo
13.
Nat Commun ; 11(1): 2097, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350281

RESUMEN

Astroviruses are a global cause of pediatric diarrhea, but they are largely understudied, and it is unclear how and where they replicate in the gut. Using an in vivo model, here we report that murine astrovirus preferentially infects actively secreting small intestinal goblet cells, specialized epithelial cells that maintain the mucus barrier. Consequently, virus infection alters mucus production, leading to an increase in mucus-associated bacteria and resistance to enteropathogenic E. coli colonization. These studies establish the main target cell type and region of the gut for productive murine astrovirus infection. They further define a mechanism by which an enteric virus can regulate the mucus barrier, induce functional changes to commensal microbial communities, and alter host susceptibility to pathogenic bacteria.


Asunto(s)
Infecciones por Astroviridae/patología , Infecciones por Astroviridae/virología , Astroviridae/fisiología , Tracto Gastrointestinal/patología , Tracto Gastrointestinal/virología , Células Caliciformes/virología , Moco/virología , Animales , Células Epiteliales/patología , Células Epiteliales/virología , Escherichia coli/fisiología , Femenino , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/ultraestructura , Masculino , Ratones Endogámicos C57BL , Moco/microbiología , Transcriptoma/genética , Replicación Viral/fisiología , Esparcimiento de Virus/fisiología
14.
Nat Commun ; 11(1): 912, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060266

RESUMEN

Progressive ventricular enlargement, a key feature of several neurologic and psychiatric diseases, is mediated by unknown mechanisms. Here, using murine models of 22q11-deletion syndrome (22q11DS), which is associated with schizophrenia in humans, we found progressive enlargement of lateral and third ventricles and deceleration of ciliary beating on ependymal cells lining the ventricular walls. The cilia-beating deficit observed in brain slices and in vivo is caused by elevated levels of dopamine receptors (Drd1), which are expressed in motile cilia. Haploinsufficiency of the microRNA-processing gene Dgcr8 results in Drd1 elevation, which is brought about by a reduction in Drd1-targeting microRNAs miR-382-3p and miR-674-3p. Replenishing either microRNA in 22q11DS mice normalizes ciliary beating and ventricular size. Knocking down the microRNAs or deleting their seed sites on Drd1 mimicked the cilia-beating and ventricular deficits. These results suggest that the Dgcr8-miR-382-3p/miR-674-3p-Drd1 mechanism contributes to deceleration of ciliary motility and age-dependent ventricular enlargement in 22q11DS.


Asunto(s)
Ventrículos Cerebrales/metabolismo , Cilios/fisiología , MicroARNs/genética , Esquizofrenia/genética , Animales , Deleción Cromosómica , Cilios/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatología
15.
Vet Pathol ; 55(6): 905-915, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30071801

RESUMEN

Coccidioidomycosis in nonhuman primates has been sporadically reported in the literature. This study describes 22 cases of coccidioidomycosis in nonhuman primates within an endemic region, and 79 cases of coccidioidomycosis from the veterinary literature are also reviewed. The 22 cases included baboons ( n = 10), macaques ( n = 9), and chimpanzees ( n = 3). The majority died or were euthanized following episodes of dyspnea, lethargy, or neurologic and locomotion abnormalities. The lungs were most frequently involved followed by the vertebral column and abdominal organs. Microscopic examination revealed granulomatous inflammation accompanied by fungal spherules variably undergoing endosporulation. Baboons represented a large number of cases presented here and had a unique presentation with lesions in bone or thoracic organs, but none had both intrathoracic and extrathoracic lesions. Although noted in 3 cases in the literature, cutaneous infections were not observed among the 22 contemporaneous cases. Similarly, subclinical infections were only rarely observed (2 cases). This case series and review of the literature illustrates that coccidioidomycosis in nonhuman primates reflects human disease with a varied spectrum of presentations from localized lesions to disseminated disease.


Asunto(s)
Coccidioidomicosis/veterinaria , Enfermedades de los Primates/patología , Animales , Coccidioidomicosis/microbiología , Coccidioidomicosis/patología , Femenino , Pulmón/patología , Macaca/microbiología , Masculino , Microscopía Electrónica/veterinaria , Pan troglodytes/microbiología , Papio/microbiología , Reacción en Cadena de la Polimerasa/veterinaria , Enfermedades de los Primates/microbiología
16.
Cell ; 174(3): 730-743.e22, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30033368

RESUMEN

Drosophila melanogaster has a rich repertoire of innate and learned behaviors. Its 100,000-neuron brain is a large but tractable target for comprehensive neural circuit mapping. Only electron microscopy (EM) enables complete, unbiased mapping of synaptic connectivity; however, the fly brain is too large for conventional EM. We developed a custom high-throughput EM platform and imaged the entire brain of an adult female fly at synaptic resolution. To validate the dataset, we traced brain-spanning circuitry involving the mushroom body (MB), which has been extensively studied for its role in learning. All inputs to Kenyon cells (KCs), the intrinsic neurons of the MB, were mapped, revealing a previously unknown cell type, postsynaptic partners of KC dendrites, and unexpected clustering of olfactory projection neurons. These reconstructions show that this freely available EM volume supports mapping of brain-spanning circuits, which will significantly accelerate Drosophila neuroscience. VIDEO ABSTRACT.


Asunto(s)
Mapeo Encefálico/métodos , Conectoma/métodos , Red Nerviosa/anatomía & histología , Animales , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Dendritas , Drosophila melanogaster/anatomía & histología , Femenino , Microscopía Electrónica/métodos , Cuerpos Pedunculados , Neuronas , Olfato/fisiología , Programas Informáticos
17.
PLoS One ; 10(7): e0131742, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26147658

RESUMEN

Although current nonhuman primate models of monkeypox and smallpox diseases provide some insight into disease pathogenesis, they require a high titer inoculum, use an unnatural route of infection, and/or do not accurately represent the entire disease course. This is a concern when developing smallpox and/or monkeypox countermeasures or trying to understand host pathogen relationships. In our studies, we altered half of the test system by using a New World nonhuman primate host, the common marmoset. Based on dose finding studies, we found that marmosets are susceptible to monkeypox virus infection, produce a high viremia, and have pathological features consistent with smallpox and monkeypox in humans. The low dose (48 plaque forming units) required to elicit a uniformly lethal disease and the extended incubation (preclinical signs) are unique features among nonhuman primate models utilizing monkeypox virus. The uniform lethality, hemorrhagic rash, high viremia, decrease in platelets, pathology, and abbreviated acute phase are reflective of early-type hemorrhagic smallpox.


Asunto(s)
Susceptibilidad a Enfermedades , Modelos Biológicos , Monkeypox virus/patogenicidad , Mpox/fisiopatología , Virus de la Viruela/patogenicidad , Animales , Callithrix , Chlorocebus aethiops , Masculino , Monkeypox virus/aislamiento & purificación , Estudios Prospectivos , Virus de la Viruela/aislamiento & purificación , Células Vero , Carga Viral
18.
J Transl Med ; 13: 228, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26174690

RESUMEN

BACKGROUND: Filovirus virus-like particles (VLP) are strong immunogens with the potential for development into a safe, non-infectious vaccine. However, the large size and filamentous structure of this virus has heretofore made production of such a vaccine difficult. Herein, we present new assays and a purification procedure to yield a better characterized and more stable product. METHODS: Sonication of VLP was used to produce smaller "nano-VLP", which were purified by membrane chromatography. The sizes and lengths of VLP particles were analyzed using electron microscopy and an assay based on transient occlusion of a nanopore. Using conformationally-sensitive antibodies, we developed an in vitro assay for measuring GP conformational integrity in the context of VLP, and used it to profile thermal stability. RESULTS: We developed a new procedure for rapid isolation of Ebola VLP using membrane chromatography that yields a filterable and immunogenic product. Disruption of VLP filaments by sonication followed by filtration produced smaller particles of more uniform size, having a mean diameter close to 230 nm. These reduced-size VLP retained GP conformation and were protective against mouse-adapted Ebola challenge in mice. The "nano-VLP" consists of GP-coated particles in a mixture of morphologies including circular, branched, "6"-shaped, and filamentous ones up to ~1,500 nm in length. Lyophilization conferred a high level of thermostability on the nano-VLP. Unlike Ebola VLP in solution, which underwent denaturation of GP upon moderate heating, the lyophilized nano-VLP can withstand at least 1 h at 75°C, while retaining conformational integrity of GP and the ability to confer protective immunity in a mouse model. CONCLUSIONS: We showed that Ebola virus-like particles can be reduced in size to a more amenable range for manipulation, and that these smaller particles retained their temperature stability, the structure of the GP antigen, and the ability to stimulate a protective immune response in mice. We developed a new purification scheme for "nano-VLP" that is more easily scaled up and filterable. The product could also be made thermostable by lyophilization, which is highly significant for vaccines used in tropical countries without a reliable "cold-chain" of refrigeration.


Asunto(s)
Cromatografía/métodos , Ebolavirus/inmunología , Nanopartículas/química , Temperatura , Vacunas de Partículas Similares a Virus/inmunología , Animales , Femenino , Filtración , Glicoproteínas/inmunología , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Nanopartículas/ultraestructura , Nanoporos , Tamaño de la Partícula , Sonicación , Resultado del Tratamiento , Vacunación , Vacunas de Partículas Similares a Virus/ultraestructura , Virión/ultraestructura
19.
Viruses ; 7(3): 857-72, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25710889

RESUMEN

Development and evaluation of medical countermeasures for diagnostics, vaccines, and therapeutics requires production of standardized, reproducible, and well characterized virus preparations. For filoviruses this includes plaque assay for quantitation of infectious virus, transmission electron microscopy (TEM) for morphology and quantitation of virus particles, and real-time reverse transcription PCR for quantitation of viral RNA (qRT-PCR). The ViroCyt® Virus Counter (VC) 2100 (ViroCyt, Boulder, CO, USA) is a flow-based instrument capable of quantifying virus particles in solution. Using a proprietary combination of fluorescent dyes that stain both nucleic acid and protein in a single 30 min step, rapid, reproducible, and cost-effective quantification of filovirus particles was demonstrated. Using a seed stock of Ebola virus variant Kikwit, the linear range of the instrument was determined to be 2.8E+06 to 1.0E+09 virus particles per mL with coefficient of variation ranging from 9.4% to 31.5% for samples tested in triplicate. VC particle counts for various filovirus stocks were within one log of TEM particle counts. A linear relationship was established between the plaque assay, qRT-PCR, and the VC. VC results significantly correlated with both plaque assay and qRT-PCR. These results demonstrated that the VC is an easy, fast, and consistent method to quantify filoviruses in stock preparations.


Asunto(s)
Ebolavirus/aislamiento & purificación , Carga Viral/métodos , Animales , Humanos , Coloración y Etiquetado/métodos , Factores de Tiempo
20.
Viral Immunol ; 28(1): 62-70, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25514232

RESUMEN

Filoviruses are causative agents of hemorrhagic fever, and to date no effective vaccine or therapeutic has been approved to combat infection. Filovirus glycoprotein (GP) is the critical immunogenic component of filovirus vaccines, eliciting high levels of antibody after successful vaccination. Previous work has shown that protection against both Ebola virus (EBOV) and Marburg virus (MARV) can be achieved by vaccinating with a mixture of virus-like particles (VLPs) expressing either EBOV GP or MARV GP. In this study, the potential for eliciting effective immune responses against EBOV, Sudan virus, and MARV with a single GP construct was tested. Trimeric hybrid GPs were produced that expressed the sequence of Marburg GP2 in conjunction with a hybrid GP1 composed EBOV and Sudan virus GP sequences. VLPs expressing these constructs, along with EBOV VP40, provided comparable protection against MARV challenge, resulting in 75 or 100% protection. Protection from EBOV challenge differed depending upon the hybrid used, however, with one conferring 75% protection and one conferring no protection. By comparing the overall antibody titers and the neutralizing antibody titers specific for each virus, it is shown that higher antibody responses were elicited by the C terminal region of GP1 than by the N terminal region, and this correlated with protection. These data collectively suggest that GP2 and the C terminal region of GP1 are highly immunogenic, and they advance progress toward the development of a pan-filovirus vaccine.


Asunto(s)
Protección Cruzada , Ebolavirus/inmunología , Marburgvirus/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Antígenos Virales/genética , Antígenos Virales/inmunología , Ebolavirus/genética , Femenino , Cobayas , Fiebre Hemorrágica Ebola/prevención & control , Enfermedad del Virus de Marburg/prevención & control , Marburgvirus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Análisis de Supervivencia , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Proteínas del Envoltorio Viral/genética , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Virosomas/genética , Virosomas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...